MPI-based Remote OpenMP Offloading: A More Efficient and
Easy-to-use Implementation

Baodi Shan
baodi.shan@stonybrook.edu
Stony Brook University
Stony Brook, New York, USA

Abid M. Malik
amalik@bnl.gov
Brookhaven National Laboratory
Upton, New York, USA

ABSTRACT
MPI+X is the most popular hybrid programming model for dis-

tributed computation on modern heterogeneous HPC systems. Nonethe-

less, for simplicity, HPC developers ideally would like to imple-
ment multi-node distributed parallel computing through a single
coherent programming model. As de facto standard for parallel
programming, OpenMP has been one of the most influential pro-
gramming models in parallel computing. Recent work has proven
that the OpenMP target offloading model could be used to pro-
gram distributed accelerator-based HPC systems with marginal
changes to the application. However, the UCX-based version of
remote OpenMP offloading still has many limitations in terms of
performance overhead and ease of use of the plugin.

In this work, we have implemented a new MPI-based remote
OpenMP offloading plugin. By comparing it with the UCX-based
version, the new MPI-based plugin has been significantly improved
in terms of performance, scalability, and ease of use. Evaluation
of our work is conducted using one proxy-app, XSBench and an
industrial-level seismic modeling code, Minimod. Results show that,
compared to the optimized UCX-based version, our optimizations
can reduce offloading latency by up to 70%, and raise application
parallel efficiency by 68% when running with 16 GPUs on data-
bound applications. In particular, the introduction of the concept
of locality-aware offloading gives developers of HPC programs
greater possibilities to take full advantage of modern hierarchical
heterogeneous computing devices.

CCS CONCEPTS

« Computing methodologies — Parallel programming lan-
guages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PMAM’23, February 25, 2023, Montreal, Canada

© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-8348-6/21/02...$15.00
https://doi.org/10.1145/3448290.3448559

Mauricio Araya-Polo
TotalEnergies EP Research & Technology US
Houston, Texas, USA

Barbara Chapman
barbara.chapman@stonybrook.edu
Stony Brook University
Stony Brook, New York, USA

KEYWORDS
OpenMP, GPGPU, distributed computing

ACM Reference Format:

Baodi Shan, Mauricio Araya-Polo, Abid M. Malik, and Barbara Chapman.
2023. MPI-based Remote OpenMP Offloading: A More Efficient and Easy-
to-use Implementation. In The 14th International Workshop on Programming
Models and Applications for Multicores and Manycores (PMAM’23), February
25, 2023, Montreal, Canada. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3448290.3448559

1 INTRODUCTION

Heterogeneous computing is becoming one of the hottest topics in
High Performance Computing (HPC). In heterogeneous computing,
GPU acceleration is the practice of using a graphics processing unit
(GPU) in addition to a central processing unit (CPU) to speed up
processing-intensive operations. At the same time, the diversity
of device types brought by heterogeneous computing makes the
portability and maintainability of programs more and more critical.

Since most distributed computing models are designed to exe-
cute code only on the CPU, developers of HPC programs often need
to write code based on vendor-specific APIs when utilizing hetero-
geneous acceleration devices, such as NVIDIA’s CUDA, AMD’s HIP,
and Intel’s oneAPL. In this case, the poor portability of the program
imposes heavy burden on the developers of HPC programs.

OpenMP [14] is the de facto HPC programming model for shared-
memory parallelism. In OpenMP version 4.0, OpenMP Target allows
running a single code on multi-platform heterogeneous devices.
In particular, the rich set of heterogeneous devices supported by
LLVM/OpenMP gives developers great convenience. Currently, the
LLVM/OpenMP Target plugin support includes ARM, AMDGCN,
CUDA, PPC, Remote, VE, X86.

Another problem posed by the distributed model is the migration
of single-node program implementations. Typically, developers use
the MPI+X strategy to migrate programs from intra-node to inter-
node implementations. This means that developers need to learn
specifically how to work across nodes and how to synchronize.
Therefore, how to replace MPI+X to reduce the workload of HPC
program development has also received attention.

Recent work of remote OpenMP offloading based on gRPC and
UCX by Patel and Doerfert [15] has shown that through extensions
in the LLVM/OpenMP runtime system, specification conforming

https://doi.org/10.1145/3448290.3448559
https://doi.org/10.1145/3448290.3448559
https://doi.org/10.1145/3448290.3448559

PMAM?’23, February 25, 2023, Montreal, Canada

OpenMP offloading applications can seamlessly utilize accelera-
tors attached to remote compute nodes. This shows the potential
for transforming OpenMP into an all-encompassing programming
model for writing performance portable and maintainable scientific
applications in the era of heterogeneous Supercomputing as an al-
ternative to hybrid programming models like MPI+X. Lu et al. [10]
present a detailed analysis of the performance and overhead of the
remote OpenMP offloading plugin and release an optimized version.
However, according to the overhead analysis, even the optimized
UCX-based remote OpenMP offloading plugin still has significant
limitations and shortcomings.

Therefore, we refactored the existing remote OpenMP offloading
plugin using MPI as the communication underlying layer. We have
compared the new version of the MPI-based plugin with the UCX-
based one; then, we analyzed the porting and performance of the
industrial program Minimod with the new version of the plugin.
Thus, this work has the following main contributions:

o Refactoring the remote OpenMP offloading plugin using MPI
as the underlying communication layer

o Improve the performance of the remote OpenMP offloading
plugin with multiple optimizations in the MPI-based version

e Propose the concept of locality-aware offloading, which al-
lows developers better leverage the performance of modern
heterogeneous computing devices

e An evaluation of the optimized plugin using proxy-apps of
real-world HPC applications

e Propose directions and possible solutions for further opti-
mization of the plugin by analyzing the industry application
Minimod code and evaluation results

The paper is organized as follows: section 2 describes LLVM/OpenMP

remote offloading and the related work,section 3 introduces the im-
plementation of the MPI-based version remote OpenMP offloading
plugin, section 4 present improvement brought by the new version,
evaluation of our work is described in section 5, and finally section 6
concludes the work and talk about future directions.

2 BACKGROUND

In this section, we describe the details of how an OpenMP target
plugin works in LLVM, how the remote OpenMP plugin works in
LLVM, as well as related work about the technologies and cases
used later in the experimental section.

2.1 OpenMP Offloading in LLVM/OpenMP

OpenMP " " libcuda.so
‘ Application H libomptarget.so H libomptarget.rtl.cuda.so H liboudart.so J

Figure 1: LLVM/OpenMP device offloading workflow for
CUDA-able devices

An OpenMP application’s offloading directives are lowered to
functions calls into the host runtime (libomptarget.so), which is
the entry point of all offloading operations in the LLVM/OpenMP
offloading (workflow shown in Figure 1). The host runtime is target-
agnostic, and it loads the device runtime plugin according to the
type of device code embedded in the fat application binary. For

Baodi Shan, Mauricio Araya-Polo, Abid M. Malik, and Barbara Chapman

example, it can load the CUDA plugin libomptarget.rtl.cuda.so,
which makes CUDA calls to transfer data and launch kernels.

The host runtime interacts with the device runtime through the
device plugin interface, which is a small set of target-agnostic C

functions, to perform offloading operations (e.g. __tgt_rtl_data_alloc()).

All device runtime plugins must implement this interface, hiding
low-level details from the host runtime.

2.2 The UCX-based Remote Offloading Plugin
and its Optimizations

RPC i
Offloading Hibomptargei,m.cuda.so

ﬁ|bomptarget.soHlbomptarget.rtl.remote.so Server

Client

-l O --

Server

Figure 2: LLVM/OpenMP remote offloading workflow for
CUDA devices

The idea of the remote offloading plugin is to use a remote
procedure call (RPC) to forward the plugin interface calls to a
remote process, so the application can transparently access devices
on other machines. The plugin implements a core set of device
plugin interfaces that interact with the host runtime. The OpenMP
application is compiled as usual, and it requires no code changes
except for doing multi-device discharge using the device(n) clause.
Due to the orthogonal design of the LLVM/OpenMP concurrent
discharge mechanism, the plugin is also compatible with OpenMP
asynchronous discharge (e.g., the nowait clause) [25].

In Figure 2, the client represents the OpenMP application, while
the server is a binary provided by the remote offloading plugin. The
user needs to run one instance of the client and one instance of the
server per accelerator of the computing node. Once connected, the
client can offload binary code to all the accelerators managed by all
the servers. Both the host runtime and the device runtime plugin
are working as they normally would, unaware of the client-server
pair in the middle.

For each plugin interface call, the client serializes the function
arguments and sends one blocking RPC request to the server. The
server will deserialize incoming requests and execute the corre-
sponding device operation, then reply to the client, so it can proceed.
For a map(to/from) operation, the buffer must also be serialized.
The server uses a task queue and a pool of threads to handle the
RPC requests, so that offloading activities on one GPU does not
block activities on other accelerators managed by the same server.

Originally, the remote offloading plugin uses gRPC [5] as its RPC
backend, since it is a natural choice. Then an UCX [23] backend
was added since it can utilize high-performance interconnects like
Infiniband, thus bringing the potential to improve the offloading
application’s performance to a level comparable to that of its MPI+X
equivalent. Based on the experimental results of [15], the UCX
version of the plugin has obvious advantages compared to the gRPC
version of the plugin, therefore, we only consider the UCX-based
version when discussing older versions of the plugin.

MPI-based Remote OpenMP Offloading: A More Efficient and Easy-to-use Implementation

2.3 Related Work

2.3.1 Remote GPU offloading. After the birth of OpenMP target
offloading, [7] uses LLVM OpenMP target offloading to run on
multi-node devices. However, the results show a significant per-
formance disadvantage of the plugin compared to the MPI version
of the same benchmark, HMMER. For the later implementation,
OmpCloud [28] uses Apache Spark nodes for communication, fault
tolerance, and load balancing management. This work treats the en-
tire Spark cluster as a standalone OpenMP target offloading device.
OmpCluster [29] makes fuller use of the computational perfor-
mance of each node, but its plugin does not support computation
using accelerated devices e.g. GPUs via pure OpenMP code. If a
developer wants to perform computation with OmpCluster and
accelerated devices, then the developer must implement device
acceleration through vendor-specific APIs such as CUDA, HIP or
OpenCL.

Besides modifying the OpenMP target offloading plugins, replac-
ing MPI+X with a task-based programming model also received
much attention, especially replacing the MPI+CUDA combination.
Among them, Charm++ [1], UPC++ [2], Legion [3], and Chapel [4]
NVSHMEM [6] enables remote communication directly from the
CUDA kernels. Intel Cluster OpenMP uses a distributed shared
memory runtime system to run OpenMP CPU parallel regions
across nodes [24]. Kokkos Remote Spaces [8] is an extension to
the Kokkos programming model [27] to support distributed shared
memory for programming GPUs and other devices. rCUDA [20] is
a framework for remote GPU virtualization, in which a set of GPUs
can be shared and remotely accessed by several clients simultane-
ously.

2.3.2 Minimod. Minimod [11] is the industry application used in
this study. It is developed and maintained by TotalEnergies E&P
Research and Technology US. Implementations of Minimod have
been evaluated with OpenMP tasks [19], and in distributed se-
tups using the Legion programming model targeting CPUs [18]
and GPUs [16, 22]. The present paper evaluates a version of Mini-
mod using OpenMP target regions wrapped in tasks to make use
of multiple GPUs simultaneously. To utilize the specification of
locality-aware offloading in the new MPI-based version, we modi-
fied Minimod accordingly. The corresponding modifications will
be introduced in subsection 5.3.

3 IMPLEMENTATION

The MPI-based version of the plugin is an LLVM/OpenMP target
plugin. Compared to the UCX-based version of the plugin, it is
compiled to contain only a dynamic library file named libomptar-
get.rtl. mpiremote.so and does not have a dedicated server. Figure 3
shows the MPI-based version of the workflow.

As a plugin for OpenMP target, the MPI-based offloading plu-
gin controls the program’s running by running a newly defined
Manager class. This class will be responsible for the entire opera-
tion of the plugin, and the operation of MPI with the corresponding
interface is also done through this class.

During the initialization phase of the program, the Manager col-
lects the local device target offloading table by calling the load_binary()
function and then broadcasts it to other nodes through MPI com-
munication world. With the information collected from all other

PMAM?’23, February 25, 2023, Montreal, Canada

MPI Comm

p f N N - <
OpenMP libomotarget.so : i . | i rtl. libcuda.so
Application plarget. | mpiremote.so i cuda.so libcudart.so
N J i L J i U J J
p ; N N p
OpenMP o | i il rtl. . libcuda.so
Application { libomptarget.so] mpiremote.so cuda.so { libcudart.so
OpenMP | [| oraetso sl T .| .| [libcudaso
Application plarg : mpiremote.so cuda.so libcudart.so
\ [N J N J
> N N (
OpenMP + libomptargetso v il | ¢ rtl. N libcuda.so
Application plarget. i mpiremote.so cuda.so libcudart.so

Figure 3: MPI-based LLVM/OpenMP remote offloading work-
flow for CUDA devices

nodes, the Manager will build a complete target offloading table,
including all devices for subsequent use. When the program needs
to distribute data, the Manager calls the corresponding MPI in-
terfaces such as MPI_Send() and MPI_Recv(). When the program
needs to execute a specific target code region, the Manager then
executes the dynamic library of the corresponding underlying plu-
gin. Limited by the design pattern of the OpenMP target, we did
not break the original Host-Device model. Therefore, we set Node
0 as the host node and the other nodes as device nodes. Therefore,
for the dataSubmit() function and dataRetrieve() function, all data
will be sent out or received by Node 0’s CPU memory.

Among the many gas pedals supported by OpenMP target of-
floading accelerators, NVIDIA GPUs are the ones receiving the
most attention. Therefore, to further reduce the overhead when
using NVIDIA GPUs, we utilize NVIDIA GPUDirect technology.
GPUDirect has been helpful in two ways for this work. It could
improve data transmission performance in both intra-node and
inter-node scenarios. The intra-node data transfer mainly refers to
GPUDirect Peer to Peer (P2P). GPUDirect P2P refers to GPU-GPU
data copying and loading directly through the memory fabric (e.g.
PClIe and NVLink) and not through the node memory. The inter-
node data transfer mainly refers to GPUDirect RDMA technology.
Remote direct memory access (RDMA) enables peripheral PCle
devices direct access to GPU memory. Designed specifically for
the needs of GPU acceleration, GPUDirect RDMA provides direct
communication between NVIDIA GPUs in remote systems. This
eliminates the need for a buffered copy of data between the system
CPU and through system memory, and according to NVIDIA [12],
this technology can increase data transfer performance by 10 times.

4 IMPROVEMENT ON MPI-BASED VERSION

In this Section, we will focus on the improvements of the MPI-based
version compared to the UCX-based version. We will first intro-
duce the architectural changes due to the change of the underlying
communication protocol, then we will introduce the concept of
locality-aware offloading, and finally, we will introduce the im-
provement for ease-of-use.

PMAM’23, February 25, 2023, Montreal, Canada

Node1 (Server)

[cPu |

GPU2 GPU3 [

- CPU

- Node0 (Client)

GPUO GPU1

crPu2 Ml cPu3 [

CPU

GPUO GPU1

Node3 (Server)

Node2 (Server)

Figure 4: Centralized model in UCX-based plugin for CUDA
devices

4.1 "Decentralized” Model

In the UCX-based version, as shown in Figure 4, the client node is
the control center for all nodes and devices, and all data storage and
transmission instructions go through the client, the central node.
On the one hand, due to the limited number of cores in the central
node, a large number of instructions are difficult to be processed in
time, causing an instruction transmission bottleneck; on the other
hand, since all data will pass through the central node, the central
node will have a memory shortage problem.

In the MPI-based version, as shown in Figure 5, the architecture
becomes "decentralized”. Due to the nature of MPI itself, we no
longer need a so-called central node as the instruction center to send
the corresponding instructions to each node, and the instruction
communication bottleneck is solved.

At the same time, MPI enables the exchange of data between any
two nodes, which provides the basis for different data exchange
methods between Intra-node and Inter-node. The (D) and (2) in Fig-
ure 4 and Figure 5 show two scenarios separately.

The (D shown is sending data from GPU1 of Node1l to GPUO of
Nodel. Both GPUs are located in the same node. In the UCX-based
version, due to the framework of the plugin, the two GPUs cannot
communicate with each other, which means that even if they are
located in the same node, Node1l’s GPU1 needs to send data back
to the client node first, and then the client node will send data back
to Node1’s GPUO. This means that the same data needs to be trans-
mitted twice in the network, introducing network overhead twice.
At the same time, since the data needs to be temporarily stored

Baodi Shan, Mauricio Araya-Polo, Abid M. Malik, and Barbara Chapman

NodeO (Host)

 CPU |

i i ©) 5
cpPuo [l ru1 [1l GPuo g
N cru2 [crus [l Ed S

o \

‘ MPI Communications ‘

/

Ccru |

B &
E Edd

Figure 5: Decentralized model in MPI-based plugin for CUDA
devices

in the CPU memory of the central node before being received by
GPUO of Nodel, this will undoubtedly increase the unnecessary
memory overhead. However, in the MPI version, due to our re-
designed plugin architecture, two devices located in the same node
can communicate with each other, and with the GPUDirect func-
tion enabled, they can exchange data directly through GPUDirect
P2P, which not only saves network overhead but also saves the
memory usage of Host node and Nodel itself. In devices that do
not support GPUDirect, the data will be transferred through GPU
device to device (D2D) or other interfaces. Since this process does
not need to go through the network transmission, its advantage in
terms of network overhead optimization remains.

The (2) shows that data is sent from GPU1 of Node2 to GPU0
of Node3. In the UCX-based version, which is also limited by the
framework design of the plugin, the server nodes cannot communi-
cate with each other. GPU1 of Node2 needs to send data back to the
client node first, and then client node sends back to GPUO of Node3.
The disadvantage of this is that since the data transfer needs to go
through client node, there is two RPCs’ overhead in one transmis-
sion. Likewise, this also occupies the memory of the client node. In
the MPI-based version, different nodes can communicate directly
with each other. With GPUDirect enabled, the data from GPU1 of
Node2 can be directly transferred to the network card via the PCle
interface, then transferred from InfiniBand to the network card of
Node3, and transferred to GPUO of Node3 via the PCle interface,
without taking up the memory of the node and with only one RPC
overhead.

4.2 Locality-aware offloading

To better handle hierarchical computing and multi-node devices in
heterogeneous computing and thus further improve performance,
we propose the concept of locality-aware offloading in the MPI-
based OpenMP offloading plugin. Locality-aware offloading refers

MPI-based Remote OpenMP Offloading: A More Efficient and Easy-to-use Implementation

to using different policies for data transmission according to the
hierarchy of devices, which means that network communication
performance can be better utilized, thus reducing unnecessary net-
work overhead. Meanwhile, for the side of OpenMP developers,
they needn’t know the practical devices hierarchy.

For example, we refactor function omp_target_memcpy() to use
different methods for different data exchanges. When the devices
(GPUs) are located in the same node, we exchange data inside the
node by calling the P2P mentioned in section 3. And only when
the devices are located in different nodes, we call the MPI-related
communication functions for data exchange between nodes. For
developers, there is no need to consider whether it is intra-node
communication or inter-node communication; the plugin will auto-
matically choose a more reasonable strategy when it runs.

In the future, we hope to extend this concept to hierarchical
offloading, which could help developers further leverage the hier-
archy of heterogeneous computing devices. For example, when a
host node needs to distribute data to other compute nodes, there
is often a large amount of duplicate data being sent. Hierarchical
offloading can have the host node send only one copy of the data to
the memory of the compute node, which is then replicated by the
compute node and distributed to the individual accelerator devices
on its node. In this case, the network overhead of transmitting data
will be further reduced.

4.3 Ease-of-use

Remote OpenMP Offloading was initially designed to extend the
availability of pure OpenMP code to support multi-node accel-
erated device offloading computations. Compared to MPI+X and
CUDA coding, remote OpenMP offloading can significantly reduce
the learning curve for developers of HPC programs, making their
applications more effective when using accelerators with less de-
velopment effort. However, the complexity of using the UCX-based
version of the plugin runs counter to this original design intent.

On the one hand, restricted to the design of the UCX-based plu-
gin, developers need to install the UCX and set up the corresponding
software environment. If they want to turn on UCX-aware support,
more steps are needed to configure it. When using UCX-based plu-
gins, developers must manually set the server and client IPs and
ports. For a typical multi-node application, the number of times you
need to configure IPs is proportional to the number of nodes. This
is cumbersome when using large accelerated-based HPC systems.

On the other hand, in UCX, the worker object provides indepen-
dent progression and completion of communication operations[10].
This means that even if all traffic goes through the same network
card, parallel injection from multiple workers can still improve
message throughput through overlapping send-receive operations
in the higher levels of the runtime system, especially when the
combined message flow is not large enough to saturate the hard-
ware bandwidth. Initially, the server uses a single worker to serve
all the GPUs it has access. This means the worker must use locks
to prevent data races caused by concurrent access from different
threads, essentially serializing many overlap-able operations and
reducing the injection rate [9]. In this way, if one wants to have the
best performance, one have to use one server per GPU to reduce
thread contention.

PMAM?’23, February 25, 2023, Montreal, Canada

#Assign RPC method (gRPC or UCX)
os.environ ['LIBOMPTARGET RPC_TRANSPORT'] = 'UCX'

#Get IPs of nodes

proc = subprocess.run(['scontrol', 'show', 'hostnames’,
nodelist_short], capture_output=True, text=True)

nodelist = proc.stdout.splitlines ()

#Setup IP and port on the client
rpc_address += convert_ip(nodelist[i])+':50050,"
#Repeat for device 1, 2, 3...

#Run client
if is_master:
cmd_client = ['./XSBench','-m', 'event ']
proc = subprocess.run(cmd_client, capture_output=True
text=True)

#Run servers
if not is_master:

my_env0 = os.environ.copy ()

my_env0 ['LIBOMPTARGET_RPC_ADDRESS'] = "0.0.0.0:50050"
my_env0['CUDA_VISIBLE_DEVICES '] = "0"

Repeat on Device 1, 2, 3...

cmd_server = ['openmp-offloading -server ']

subprocess.Popen(cmd_server ,env=my_env0, shell=True)
subprocess.Popen(cmd_server ,env=my_envl, shell=True)
subprocess.Popen(cmd_server ,env=my_env2, shell=True)
subprocess.run(cmd_server ,env=my_env3, shell=True)

Figure 6: Python running script of XSBench on UCX-based
plugin with slurm

srun --pty --exclusive -N 4 ./XSbench -m event

Figure 7: Running command of XSBench on MPI-based plu-
gin with slurm

Figure 6 shows a typical Python script running UCX-based
XSBench on Cypress (TotalEnergies’s R&D HPC system, fully de-
scribed in the next section) via slurm. As you can see, the developer
needs to get the IP information of the node and the port information
and start different programs on the client and server in turn. It is
worth noting that the repetitive part of the script is greatly simpli-
fied in Figure 6, and the actual length of the script needed to run
is much longer than the length shown. Figure 7 shows the slurm
command to run MPI-based XSBench as a regular MPI program;
using the MPI-based OpenMP offloading plugin does not require
additional setup. If the developer is using a machine without slurm,
such as the IBM Spectrum LSF used by ORNL’s Summit, the MPI-
based plugin can run as a regular MPI program, but the script to
run the UCX-based plugin program may require very different run
instructions, which creates a significant development effort.

5 EXPERIMENT

We evaluate our new MPI-based plugin using microbenchmarks and
proxy-apps on the Cypress computing system at TotalEnergies R&T
in Houston. Each Cypress node contains one AMD EPYC 7F52 16-
core CPU, one Mellanox ConnectX-6 200 Gb/s Infiniband network
card, and four NVIDIA A100 GPUs. The system runs CentOS 8 with
Linux kernel 4.18.0, CUDA 11.5.119, and MOFED-5.1-2.5.8.0.

PMAM?’23, February 25, 2023, Montreal, Canada

As the Baseline, we use commit 612 0be4 of the original UCX-
based remote offloading plugin, which is based on commit 6 7ab4c0
of the LLVM trunk. The remote offloading plugin with optimization
in [10] is referred to as Opt. Since we can eliminate unnecessary
overhead by allowing the client to offload to its local GPUs directly
(instead of go through the remote plugin), we have included results
that enabled client-side offloading, which we refer to as Opt-L. As
our new MPI-based version, it is referred to as New.

5.1 Microbenchmarks

map(to) map(from)
—— Baseline 105] = Baseline
105 Opt Opt
—— New 4] — New
3104 g10
; 3 §103
g1 3
8 8
102 102
10t 10t
0 10 20 0 10 20

Buffer size in bytes (2%) Buffer size in bytes (2%)

Figure 8: Remote GPU map (to/from) latency

Figure 8 shows the remote GPU to/from mapping latency of
different buffer sizes. Compared to the baseline, the new MPI-based
version of the plugin reduces the message latency by ~ 92% for
small buffers and ~ 97% for large ones. Compared to the optimized
UCX-based version(Opt), the new MPI-based version of the plugin
reduces the message latency by ~ 73% for small buffers. For the
large buffers, the to mapping and from mapping shows different
results. For to mapping latency, the new MPI-based version reduces
the message latency by ~ 70%; for from mapping latency, the new
MPI-based version shows an acceptable enhancement.

The new MPI-based version shows little to no speedup for buffer
size around 2! bytes. This is caused by the compound effects of
UCX switching its internal communication protocol. A similar phe-
nomenon happens in Opt with 21° since MPI’s underlying commu-
nication layer is also UCX. Because we used the same setting for all
buffer sizes instead of the best configuration for each buffer size, es-
pecially with NVIDIA Direct enabled, this result is not optimal. For
real applications, the user should adjust their configuration of UCX
like UCX’s protocol switching thresholds(UCX_RNDV_THRESH)
and schemes(UCX_RNDV_THRESH), so that the latency of the most
frequently mapped buffer sizes could be optimal.

5.2 XSBench

XSBench [26] is a proxy-apps that capture the core computation
of the Monte Carlo neutron transport code OpenMC [21]. We use
the OpenMP offloading version with the same modifications used
in [15] to enable multi-device offloading. We run the proxy-apps on
1to 16 GPUs. We verified the performance improvement of the new
version of the plugin by testing the weak-scaling version and the
strong-scaling version of XSBench, respectively. Kernels execution
time, total host-device transfer size per kernel and the total number
of host-device transfers per kernel are listed in Table 1.

Baodi Shan, Mauricio Araya-Polo, Abid M. Malik, and Barbara Chapman

—0— Ideal Small —— Large

1.0 1

0.9 1

0.8 1

0.7 1

0.6 1

Runtime(Relative to N(1,4))

N(1,4) N(2',8) N(3',12) N(4',16)
Device Setup

Figure 9: Strong-Scaling XSBench scaling

Strong scaling XSBench version results are presented in Figure 9.
Based on [15] results, previous versions of the plugin scaled poorly
when running the strong scaling XSBench, so they are not listed
here. For the horizontal axis, N (n, 4n) stands for running the bench-
mark on n nodes and using all 4n GPUs. It can be seen that the
MPI-based version of the plugin shows good scalability both for
large-size data and small-size data. The scalability of both is very
close to that of the ideal behavior.

—<— Baseline —&— Opt-L
Small Opt 7 New Large
40
1.04
o 304
gos
E 20+
2 0.6
104
0.4+
oA

N(1,4) N(2,8) N(3,12) N(4,16) N(1,4) N(2,8) N(3,12) N(4,16)
Device Setup Device Setup

Figure 10: Weak-Scaling XSBench scaling

Weak scaling XSBench version results are presented in Figure 10.
The baseline version plugin running the large data size crashes
since it exhausts all available client host memory.

For the small data size, since the overhead percentage of trans-
mitted data is very limited, the performance advantage of the MPI-
based version cannot be highlighted at this time. There is no sig-
nificant change compared to Opt and Opt-L, but there is still a big
advantage compared to the baseline. For large-data size, the new
version of the plugin can improve performance by up to ~ 68%.

5.3 Minimod

Minimod [11] is a proxy application that simulates the propagation
of waves through subsurface models by solving a finite difference
discretized form of the wave equation. In this work, we use one of

MPI-based Remote OpenMP Offloading: A More Efficient and Easy-to-use Implementation

PMAM?’23, February 25, 2023, Montreal, Canada

Table 1: XSBench kernel durations and per-kernel launch data transfers

‘ Kernel-Small ‘ Transfer-Small ‘ Kernel-Large ‘ Transfer-Large ‘ No. Transfers

XSBench | 5638ms | 2404MB |

271.6ms | 5648 MB | 19

for (int g = 0; g < nGPUs; g++) {
#pragma omp task depend (...)

#pragma omp target teams distribute parallel for device
(g)
for (...)
// Stencil computation

}

// Halo exchange

for (int g = 0; g < nGPUs; g++) {
// Left halo region: DtoH
#pragma omp task depend (...)
#pragma omp target update from (...)
// Left halo region: HtoD
#pragma omp task depend(...)
#pragma omp target update to (...) device(g-1)
// Repeat for the right halo regions

device (g)

Figure 11: Simplified Minimod multi-GPU offloading and
halo exchange workflow without locality-aware offloading

for (int g = 0; g < nGPUs; g++) {
#pragma omp task depend (...)
#pragma omp target teams distribute parallel for device
(g)
for (...)
// Stencil computation
}
Halo exchange
for (int g = 0; g < nGPUs; g++) {
Left halo region: DtoD or
#pragma omp task depend (...)
omp_target_memcpy (Ptr_Src, Ptr_Dst,
// Repeat for the right halo regions

PtoP

DevicelD) ;

Figure 12: Simplified Minimod multi-GPU offloading and
halo exchange workflow with locality-aware offloading

the kernels contained in Minimod: the acoustic isotropic propagator
in a constant-density domain. This is the same kernel used in [18].

Minimod supports multi-device OpenMP offloading using target
regions wrapped in OpenMP tasks (see Figure 11), and it shows
good strong and weak-scaling behavior [19]. In this work, the 3D
grid used in Minimod is partitioned along the X-axis (i.e. sliced
parallel to the YZ-plane) regardless of the number of devices it is
running on. Therefore, the amount of halo data exchanged between
the devices is only related to the size of the cross-section of the
grid, i.e., dimY X dimZ. In the UCX-based version plugin, since the
offloading servers are only connected to the client, not to each other,
the halo data must all be relayed by the client, creating a central
communication bottleneck. Minimod’s kernel elapsed time and data
transfer sizes for running on two devices are listed in Table 2.

In the new version of the MPI-based plugin, we can optimize
the way of halo data exchange due to the support of locality-aware

offloading. Figure Figure 12 shows the optimized code, and in com-
parison to the old version of the UCX-based plugin, the new version
of the code contains fewer lines devoted to data exchange since
the plugin runtime will choose (through omp_target_memcpy())
the specific way to manage data exchange through locality-aware
offloading to achieve better performance.

= Opt opt-L —¥— New

Grid Size 1003 Grid Size 500°

10

1.2 _—a
- 1.14 : 81
z
£1.04
c 61
209

0.8 41

N(1,4) N(2,8) N(3,12) N(4,16) N(1,4) N(2,8) N(3,12) N(4,16)

Device Setup Device Setup

Figure 13: Results of Minimod with grid size 100> and 5003

Minimod results with grid size 1003 and 5003 are presented
in Figure 13. To better focus on the performance improvements of
the new versions of the plugin, we discarded the subpar baseline
results. The new MPI-based version outperforms Opt and Opt-L
versions of the plugin significantly, showing the effectiveness of
our improvement.

—e— 750° 1000° —m— 15003 —— 20003

2.0 A

1.81

1.6

1.4

1.24

1.04

Runtime(Relative to N(1,4))

0.8 1

0.6 1

N(L,4) N(2,8) N(3,12) N(4,16)

Device Setup

Figure 14: Minimod scaling results with new plugin on dif-
ferent large sizes

However, from strong scaling perspective, the results for Fig-
ure 13 are clearly not good enough (see [17]). It is well-known

PMAM?’23, February 25, 2023, Montreal, Canada

Baodi Shan, Mauricio Araya-Polo, Abid M. Malik, and Barbara Chapman

Table 2: Minimod total kernel durations and data transfers (per iteration)

‘ Kernel-1003 ‘ Transfer-1003 ‘ Kernel-1003 ‘ Transfer-5003 ‘ No. Transfers

Minimod | 171.9ps | 1822KB

(and reported in [10]), that as the number of devices increases, the
execution time of the kernel decreases linearly, where the halo
exchange overhead grows linearly, this is due to the domain de-
composition of the problem. This problem is mitigated in the MPI
version by replacing inter-node data exchange with intra-node data
exchange, but it only marginally solved the problem. Therefore, we
have further explored the problem of poor scalability exhibited by
OpenMP-offloading-based Minimod.

First, in order to better characterize the problem, we obtained Fig-
ure 14 by increasing the size of the grid so that the amount of com-
putation per iteration increases, thus reducing the proportion of the
total time spent on data transfer overhead. According to Figure 14,
the program execution time decreases with the number of devices
in the range of 4-8 when the grid size increases to 7503. However,
when the number of devices increases further, the speedup de-
creases accordingly, and this happens as we continue enlarging the
grid.

Then, we perform a simple theoretical analysis of the Minimod
strong scaling behavior and obtained Table 3. When the number of
devices is 1, the program crashes due to insufficient device mem-
ory. From Table 3, we can see that when the number of devices
increases from 1 to 4, the computation of a single device decreases
proportionally, but the overhead generated by data exchange does
not increase significantly since intra-node data movement is quite
efficient, and the overhead of inter-node communication is 0. This
scenario changes when the number of devices increases from 4 to 8,
the data exchange between nodes becomes a substantial overhead
due to the emergence of inter-node communication. Nonetheless,
since the computation of a single device also appears to be signif-
icantly reduced at this time, the program can still guarantee its
strong scalability, when the computation is relatively large. Finally,
when the number of devices further increases from 8 to 16, the
computation time is minimal per single device, but the data ex-
change between nodes appears to be significantly increased, given
the non-overlap between computation and communication. This
phenomenon eventually leads to a sharp decline in the program’s
performance.

Table 4 shows the profiling results obtained by NVIDIA Nsight
Systems[13] with a grid size of 10003. It can be seen that the profiling
results are shown in Table 4 match precisely with the results of the
theoretical analysis in Table 3.

Figure 15 and Figure 16 show screenshots from running the
profiler for two-node and four-node Minimod, respectively. The
blue rectangles in each “CUDA HW” row show task executions
on the GPUs’ kernel, and the red rectangles show the CUDA P2P.
The gaps in the middle of the colored rectangle are occupied by
data transfer between nodes over the network. While the two-node
profiling shows a healthy GPU utilization, the four-node profiling
results show the overall GPU utilization is not so high.

6733 pus | 4032KB | 2

Processes (2)

-~ O (10034 E— ——

» CUDA HW T 1 T

» CUDA HW ' — —
Node 0

» CUDA HW — —

» CUDA HW L L]

» Threads (2

~on .]

» CUDAHW T L] 1
Node{ ' CUDAHW 4 - 2 —

» CUDA HW pu— —

» CUDAHW] Y

» Threads (2

Figure 15: Sample NVIDIA Nsight Systems profiling time
trace for two nodes

Processes (4)

-+) (1297948

» CUDAHW -

» CUDAHW - - - -
Node 0 » CUDAHW - - - -

» CUDAHW -

» Threads (2

<O e

» CUDAHW - L E . - Y

» CUDAHW - w L 3 - - - T
Node 1~ » cudanw - - . w ‘- e

» CUDAHW % -

» Threads (2

Nel;

s CUDAHW - 4 :

» CUDAHW - - = - - -
Node 2 » CUDAHW — | - =

» CUDAHW = .

» Threads (2

e (983972]

» CUDAHW) - - .,

» CUDAHW - - - -

» CUDAHW o " - o
Node 3

» CUDAHW
» Threads (2

Figure 16: Sample NVIDIA Nsight Systems profiling time
trace for four nodes

From the above analysis of Minimod, we do note that the MPI-
based remote OpenMP offloading plugin overlaps communication
and computation. Whereas, there is still room to improve the per-
formance of the plugin.

6 CONCLUSION AND FUTURE WORK

MPI-based remote OpenMP offloading is an important step in the
evolution of OpenMP. Its superior performance, ease of use, and bet-
ter scalability and portability make it a good choice for distributed
HPC developers. As a continuation of remote OpenMP offloading,
the MPI-based plug-in can reduce the development burden of devel-
opers compared to MPI+X. Figure 17 shows the halo exchange part
of Minimod MPI+CUDA version. Compared to the user-friendly
API of remote OpenMP offloading, the code of the MPI+CUDA
version is extremely cumbersome.

In this work, we use the refactored MPI-based version to address
the performance bottlenecks presented in [10] and optimize them
to achieve further performance improvements over the Baseline
version. The evaluated performance using Microbenchmark shows
a performance improvement of up to 70% over the previous version.

MPI-based Remote OpenMP Offloading: A More Efficient and Easy-to-use Implementation

Table 3: Theoretical analysis of Minimod with grid size 20003

PMAM?’23, February 25, 2023, Montreal, Canada

No. Nodes | No. Devices | Computation Per Device | Intra-Node Data Exchange | Inter-Node Data Exchange | Time For 20003
Per Iteration Per Iteration
1 1 100% 0 0 Crash
1 4 25% 6 0 145.9850s
2 8 12.5% 12 2 84.8367s
4 16 6.25% 22 8 93.8965s
Table 4: Profiling results of Minimod with grid size 10003
No. Nodes | No. Devices | Kernel Time | Intra-Node Data Exchange Time | Inter-Node Data Exchange Time | Total Time
(CUDA P2P Time) (MPI Time)
1 4 75.9s 2.348s 0Os 19.9054s
2 8 38.7s 2.300s 18.234s 13.3376s
4 16 29.8s 2.887s 39.500s 24.6907s
In the XSBench evaluation, the latency was even reduced by 68% ACKNOWLEDGEMENTS

in the face of a weak-scaling version.

By replacing the underlying communication method, we have
given more possibilities to remote OpenMP offloading - locality-
aware offloading. This new feature is applied to the Minimod code,
we have achieved a degree of "strong scalability” in offloading for
the first time, which was not possible in the UCX-based versions
[15] and [10] for large cases.

From Minimod’s performance analysis and profiling, we can
see that migrating a single-node OpenMP offloading program to
a multi-node program based on the remote OpenMP offloading
plugin will incur performance loss. This is because of two main
reasons, on the one hand, increased inter-node overhead, and on the
other hand, under-utilization of node-level computing resources.

The MPI-based version still has room for improvement. The plu-
gin current version does not take advantage of alternative, and po-
tentially more efficient runtime such as Partitioned Global Address
Space (PGAS). The traditional two-sided communication between
multiple nodes is still used, which is an inefficient mechanism for
task synchronization. As next steps, we will optimize the synchro-
nization method between nodes by enabling PGAS, to further re-
duce this overhead, one-sided communication will be exploited, this
might be especially useful to handle some OpenMP target metadata
(e.g. OpenMP target table).

For the insufficient utilization of resources hierarchy, we will
further extend the concept of locality-aware offloading to hierar-
chical offloading. This will be achieved by giving developers new
APIs, that map better to local computing resources configuration,
that allow programs to achieve the highest possible performance
on modern hierarchical heterogeneous computing devices.

In addition, as a plugin for OpenMP target, the MPI-based one
only implements a minimal set of features. For example, asynchro-
nous execution of the OpenMP target task is not yet supported.
We will further improve the completeness of the remote OpenMP
offloading function.

We would like to thank TotalEnergies E&P Research and Technolo-
gies US for their support of this work. This research was supported
in part by the Exascale Computing Project (17-SC-20-SC), a collab-
orative effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration.

REFERENCES

[1] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni, M. Robson,
Y. Sun, E. Totoni, L. Wesolowski, and L. Kale. 2014. Parallel Programming with
Migratable Objects: Charm++ in Practice. In SC '14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
647-658. https://doi.org/10.1109/SC.2014.58

[2] John Bachan, Scott B. Baden, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil,
Dan Bonachea, Paul H. Hargrove, and Hadia Ahmed. 2019. UPC++: A High-
Performance Communication Framework for Asynchronous Computation. In
2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
963-973. https://doi.org/10.1109/IPDPS.2019.00104

[3] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. 2012. Legion: Expressing
locality and independence with logical regions. In SC ’12: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis. 1-11. https://doi.org/10.1109/SC.2012.71

[4] B.L.Chamberlain, D. Callahan, and H.P. Zima. 2007. Parallel Programmability and
the Chapel Language. The International Journal of High Performance Computing
Applications 21, 3 (2007), 291-312. https://doi.org/10.1177/1094342007078442
arXiv:https://doi.org/10.1177/1094342007078442

[5] gRPC community. [n.d.]. gRPC. https://grpc.io/about/.

[6] Chung-Hsing Hsu, Neena Imam, Akhil Langer, Sreeram Potluri, and Chris J.
Newburn. 2020. An Initial Assessment of NVSHMEM for High Performance Com-
puting. In 2020 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). 1-10. https://doi.org/10.1109/IPDPSW50202.2020.00104

[7] Arpith C. Jacob, Ravi Nair, Alexandre E. Eichenberger, Samuel F. Antao, Carlo

Bertolli, Tong Chen, Zehra Sura, Kevin O’Brien, and Michael Wong. 2015. Ex-

ploiting Fine- and Coarse-Grained Parallelism Using a Directive Based Approach.

In OpenMP: Heterogenous Execution and Data Movements, Christian Terboven,

Bronis R. de Supinski, Pablo Reble, Barbara M. Chapman, and Matthias S. Miller

(Eds.). Springer International Publishing, Cham, 30-41.

Kokkos. [n.d.]. Kokkos Remote Spaces. https://github.com/kokkos/kokkos-

remote-spaces

[9] Wenbin Lu, Tony Curtis, and Barbara Chapman. 2019. Enabling Low-Overhead
Communication in Multi-threaded OpenSHMEM Applications using Contexts. In
2019 IEEE/ACM Parallel Applications Workshop, Alternatives To MPI (PAW-ATM).
47-57. https://doi.org/10.1109/PAW- ATM49560.2019.00010
[10] Wenbin Lu, Baodi Shan, Eric Raut, Jie Meng, Mauricio Araya-Polo, Johannes
Doerfert, Abid M. Malik, and Barbara Chapman. 2022. Towards Efficient Remote
OpenMP Offloading. In OpenMP in a Modern World: From Multi-device Support to
Meta Programming, Michael Klemm, Bronis R. de Supinski, Jannis Klinkenberg,
and Brandon Neth (Eds.). Springer International Publishing, Cham, 17-31.

—
)

https://doi.org/10.1109/SC.2014.58
https://doi.org/10.1109/IPDPS.2019.00104
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1177/1094342007078442
https://arxiv.org/abs/https://doi.org/10.1177/1094342007078442
https://grpc.io/about/
https://doi.org/10.1109/IPDPSW50202.2020.00104
https://github.com/kokkos/kokkos-remote-spaces
https://github.com/kokkos/kokkos-remote-spaces
https://doi.org/10.1109/PAW-ATM49560.2019.00010

PMAM?’23, February 25, 2023, Montreal, Canada

// Make sure the MPI is initialized and that we have
sufficient thread support
if (MPI_Initialized(&init) != MPI_SUCCESS || !init)
return ERROR_INITIALIZATION_FAILED;
AsfResult r = checkMPIThreading () ;
if (r < SUCCESS) return r;

// Get some stats from the base communicator

if (MPI_Comm_size (commbase, &size) != MPI_SUCCESS) ({
mpi_exit();
return ERROR_INITIALIZATION_FAILED ;

}
// Figure out the dimensions we'll be working with.
if (dims[0] == 0 && dims[1] == 0 && dims[2] == 0) {
// For simplicity we just let MPI do its thing. It
might not be balanced but it 'll work.
if (MPI_Dims_create(size , 3, dims) != MPI_SUCCESS) ({
mpi_exit();
return ERROR_INITIALIZATION_FAILED;
}
} else if(dims[0] == 0 || dims[1] == 0 || dims[2] == 0) {

mpi_exit () ;
return ERROR_INITIALIZATION_FAILED;
}

// The allocations must be exact

if (dims [0] » dims[1] « dims[2] != size) {
mpi_exit();
return ERROR_INITIALIZATION_FAILED;

}

// Now that the sanity checks are done, allocate some
space for us to work
AsfPCollective_MPI coll;
if (!(coll = malloc(sizeof «coll))) {
mpi_exit();
return ERROR_OUT _OF MEMORY;
}

// Get our location in the entire grid
int rank;
if (MPI_Comm_rank(coll ->communicator, &rank) !=
MPI_SUCCESS) {
MPI_Comm_free(& coll ->communicator) ;
free(coll);
mpi_exit () ;
return ERROR_INITIALIZATION_FAILED;
}
int coords[3];
if (MPI_Cart_coords(coll ->communicator, rank, 3, coords)
!= MPI_SUCCESS) {
MPI_Comm_free(& coll —>communicator) ;
free(coll);
mpi_exit();
return ERROR_INITIALIZATION_FAILED;

}
Send message to everyone in the neighborhood and
receive
// back the numbers of Cuboids to send to each.
for(size_t i = 0; 1 < cnt; i++) {
if (MPI_Isend (...) != MPI SUCCESS) {
mpi_exit();
}
}
for(size_t i = 0; 1 < cnt; i++) {
if (MPI_Recv (...) != MPL SUCCESS) {
mpi_exit();
}
}

// Corresponding CUDA code

for (uint64_t i = 0; i < width; ++i) {
cudaMemcpy2D (...) ;

!

#if 0

copyln_DEV <<<dim3 (width, height, depth),1>>>(...);
#endif
cudaDeviceSynchronize () ;

Figure 17: Simplified Minimod halo exchange with
MPI+CUDA

Baodi Shan, Mauricio Araya-Polo, Abid M. Malik, and Barbara Chapman

[11] Jie Meng, Andreas Atle, Henri Calandra, and Mauricio Araya-Polo. 2020.
Minimod: A Finite Difference solver for Seismic Modeling. arXiv (2020).
arXiv:2007.06048 [cs.DC] https://arxiv.org/abs/2007.06048

[12] NVIDIA. [n.d.]. NVIDIA CUDA GPUDirect RDMA. https://docs.nvidia.com/

cuda/gpudirect-rdma/index.html.

NVIDIA. [n.d.]. NVIDIA Nsight Systems. https://developer.nvidia.com/nsight-

systems.

[14] OpenMP Architecture Review Board. 2018. OpenMP Application Program-

ming Interface. https://www.openmp.org/wp-content/uploads/OpenMP- API-

Specification-5.0.pdf Version 5.0.

Atmn Patel and Johannes Doerfert. 2022. Remote OpenMP Offloading. In High

Performance Computing, Ana-Lucia Varbanescu, Abhinav Bhatele, Piotr Luszczek,

and Baboulin Marc (Eds.). Springer International Publishing, Cham, 315-333.

https://doi.org/10.1007/978-3-031-07312-0_16

Eric Raut, Jonathon Anderson, Mauricio Araya-Polo, and Jie Meng. 2021. Evalua-

tion of Distributed Tasks in Stencil-based Application on GPUs. In 2021 IEEE/ACM

6th International Workshop on Extreme Scale Programming Models and Middleware

(ESPM2). 45-52. https://doi.org/10.1109/ESPM254806.2021.00011

Eric Raut, Jonathon Anderson, Mauricio Araya-Polo, and Jie Meng. 2021. Evalua-

tion of Distributed Tasks in Stencil-based Application on GPUs. In 2021 IEEE/ACM

6th International Workshop on Extreme Scale Programming Models and Middleware

(ESPM2). 45-52. https://doi.org/10.1109/ESPM254806.2021.00011

Eric Raut, Jonathon Anderson, Mauricio Araya-Polo, and Jie Meng. 2021. Port-

ing and Evaluation of a Distributed Task-Driven Stencil-Based Application. In

Proceedings of the 12th International Workshop on Programming Models and

Applications for Multicores and Manycores (Virtual Event, Republic of Korea)

(PMAM’21). Association for Computing Machinery, New York, NY, USA, 21-30.

https://doi.org/10.1145/3448290.3448559

Eric Raut, Jie Meng, Mauricio Araya-Polo, and Barbara Chapman. 2020. Evaluat-

ing Performance of OpenMP Tasks in a Seismic Stencil Application. In OpenMP:

Portable Multi-Level Parallelism on Modern Systems, Kent Milfeld, Bronis R.

de Supinski, Lars Koesterke, and Jannis Klinkenberg (Eds.). Springer International

Publishing, Cham, 67-81. https://doi.org/10.1007/978-3-030-58144-2_5

[20] Carlos Reafio, Federico Silla, Gilad Shainer, and Scot Schultz. 2015. Local and
Remote GPUs Perform Similar with EDR 100G InfiniBand. In Proceedings of the
Industrial Track of the 16th International Middleware Conference (Vancouver, BC,
Canada) (Middleware Industry '15). Association for Computing Machinery, New
York, NY, USA, Article 4, 7 pages. https://doi.org/10.1145/2830013.2830015

[21] Paul K. Romano and Benoit Forget. 2013. The OpenMC Monte Carlo particle

transport code. Annals of Nuclear Energy 51 (2013), 274-281. https://doi.org/10.

1016/j.anucene.2012.06.040

Ryuichi Sai, John Mellor-Crummey, Xiaozhu Meng, Mauricio Araya-Polo, and Jie

Meng. 2020. Accelerating High-Order Stencils on GPUs. arXiv:2009.04619 [cs.DC]

Pavel Shamis, Manjunath Gorentla Venkata, M. Graham Lopez, Matthew B. Baker,

Oscar Hernandez, Yossi Itigin, Mike Dubman, Gilad Shainer, Richard L. Graham,

Liran Liss, Yiftah Shahar, Sreeram Potluri, Davide Rossetti, Donald Becker, Dun-

can Poole, Christopher Lamb, Sameer Kumar, Craig Stunkel, George Bosilca, and

Aurelien Bouteiller. 2015. UCX: An Open Source Framework for HPC Network

APIs and Beyond. In 2015 IEEE 23rd Annual Symposium on High-Performance

Interconnects. 40-43. https://doi.org/10.1109/HOTIL.2015.13

Christian Terboven, Dieter An Mey, Dirk Schmidl, and Marcus Wagner. 2008. First

Experiences with Intel Cluster OpenMP. In Proceedings of the 4th International

Conference on OpenMP in a New Era of Parallelism (West Lafayette, IN, USA)

(IWOMP’08). Springer-Verlag, Berlin, Heidelberg, 48-59.

Shilei Tian, Johannes Doerfert, and Barbara Chapman. 2022. Concurrent Execu-

tion of Deferred OpenMP Target Tasks with Hidden Helper Threads. In Languages

and Compilers for Parallel Computing, Barbara Chapman and José Moreira (Eds.).

Springer International Publishing, Cham, 41-56.

[26] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. 2014. XS-

Bench - The Development and Verification of a Performance Abstraction for

Monte Carlo Reactor Analysis. In PHYSOR 2014 - The Role of Reactor Physics toward

a Sustainable Future. Kyoto. https://www.mcs.anl.gov/papers/P5064-0114.pdf

Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Dang,

Nathan Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S. Hollman, Dan

Ibanez, Nevin Liber, Jonathan Madsen, Jeff Miles, David Poliakoff, Amy Powell,

Sivasankaran Rajamanickam, Mikael Simberg, Dan Sunderland, Bruno Turcksin,

and Jeremiah Wilke. 2022. Kokkos 3: Programming Model Extensions for the

Exascale Era. IEEE Transactions on Parallel and Distributed Systems 33, 4 (2022),

805-817. https://doi.org/10.1109/TPDS.2021.3097283

Hervé Yviquel, Lauro Cruz, and Guido Araujo. 2018. Cluster Programming Using

the OpenMP Accelerator Model. ACM Trans. Archit. Code Optim. 15, 3, Article 35

(aug 2018), 23 pages. https://doi.org/10.1145/3226112

Hervé Yviquel, Marcio Pereira, Emilio Francesquini, Guilherme Valarini, Pe-

dro Rosso Gustavo Leite, Rodrigo Ceccato, Carla Cusihualpa, Vitoria Dias, Sandro

Rigo, Alan Souza, and Guido Araujo. 2022. The OpenMP Cluster Programming

Model. 51st International Conference on Parallel Processing Workshop Proceedings

(ICPP Workshops 22) (2022).

[13

[15

[16

(17

[18

[19

~
£,

[23

[24

~
2

[27

S
&,

[29

https://arxiv.org/abs/2007.06048
https://arxiv.org/abs/2007.06048
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1007/978-3-031-07312-0_16
https://doi.org/10.1109/ESPM254806.2021.00011
https://doi.org/10.1109/ESPM254806.2021.00011
https://doi.org/10.1145/3448290.3448559
https://doi.org/10.1007/978-3-030-58144-2_5
https://doi.org/10.1145/2830013.2830015
https://doi.org/10.1016/j.anucene.2012.06.040
https://doi.org/10.1016/j.anucene.2012.06.040
https://arxiv.org/abs/2009.04619
https://doi.org/10.1109/HOTI.2015.13
https://www.mcs.anl.gov/papers/P5064-0114.pdf
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1145/3226112

	Abstract
	1 Introduction
	2 Background
	2.1 OpenMP Offloading in LLVM/OpenMP
	2.2 The UCX-based Remote Offloading Plugin and its Optimizations
	2.3 Related Work

	3 Implementation
	4 Improvement on MPI-based Version
	4.1 "Decentralized'' Model
	4.2 Locality-aware offloading
	4.3 Ease-of-use

	5 Experiment
	5.1 Microbenchmarks
	5.2 XSBench
	5.3 Minimod

	6 Conclusion and Future Work
	References

