
Towards Efficient Remote OpenMP Offloading

Wenbin Lu1, Baodi Shan1, Eric Raut1, Jie Meng2, Mauricio Araya-Polo2,
Johannes Doerfert3, Abid M. Malik4, and Barbara Chapman1,4

1 Stony Brook University, Stony Brook NY 11794, USA
{wenbin.lu,baodi.shan,eric.raut,barbara.chapman}@stonybrook.edu

2 TotalEnergies EP R&T, Houston TX 77002, USA
3 Argonne National Laboratory, Lemont, IL 60439, USA

jdoerfert@anl.gov
4 Brookhaven National Laboratory, Upton NY 11793, USA

amalik@bnl.gov

Abstract. On modern heterogeneous HPC systems, the most popular
way to realize distributed computation is the hybrid programming model
of MPI+X (X being OpenMP/CUDA/etc.), as it has been proven to
perform well with various scientific applications. However, application
developers prefer to use a single coherent programming model over a
hybrid model, as maintainability and portability decrease per additional
model. Recent work [14] has shown that the OpenMP device offload-
ing model could be used to program distributed accelerator-based HPC
systems with minimal changes to the application.
In this paper, we improve the performance of OpenMP remote offload-
ing through various runtime optimizations, guided by a detailed overhead
analysis. Evaluation of our work is conducted using an industrial-level
seismic modeling code, Minimod, as well as two proxy-apps, XSBench
and RSBench. Results show that, compared to the baseline version,
our optimizations can reduce offloading latencies by up to 92%, and
raise application parallel efficiency by at least 25.2% when running with
16 GPUs. We then point out why strong scaling is still difficult with
OpenMP remote offloading, and propose further improvements to the
runtime to increase scalability.

Keywords: OpenMP · GPGPU · distributed computing

1 Introduction

As we move towards extreme heterogeneity, it is increasingly important to uti-
lize HPC accelerators like GPUs efficiently in the distributed setting. Also, the
great variety in accelerator software/hardware makes the portability and main-
tainability of applications as important as reducing the time to solution.

As many of the distributed programming models were designed with only the
CPUs as their primary processing elements, users often have to add additional
layers of domain decomposition and use vendor-specific APIs to take advantage
of the accelerators. For code initially written in intra-node programming models,

https://orcid.org/0000-0002-1022-3801
https://orcid.org/0000-0001-8091-2066


2 W. Lu et al.

they often require even more effort to port to a hybrid programming model that
can run across multiple nodes. This increases the development burden and poses
great portability challenges.

OpenMP [13] is the de facto HPC programming model for shared-memory
parallelism. Version 4.0 of OpenMP introduced device offloading to execute code
on accelerators, without the user having to write device kernels in vendor-specific
APIs. Recent work by Patel and Doerfert [14] has shown that through exten-
sions in the LLVM/OpenMP runtime system, specification-conforming OpenMP
offloading applications can seamlessly utilize accelerators attached to remote
compute nodes. This shows the potential for transforming OpenMP to an all-
encompassing programming model for writing performance portable and main-
tainable scientific application in the era of heterogeneous supercomputing, as an
alternative to hybrid programming models like MPI+X.

In this paper, we optimize the previous work and push OpenMP remote
offloading performance further. We then point out limitations that are deeply
rooted in the design of the LLVM/OpenMP runtime, in the hope to stir up
discussions about remote offloading in the OpenMP community, and inspire
future OpenMP runtime designs. Our main contributions are the following:

– A detailed overhead analysis of the OpenMP remote offloading plugin.
– A series of runtime optimizations that significantly reduce the overhead of

the remote offloading process.
– An evaluation of the optimized plugin using proxy-apps of real-world HPC

applications.
– A discussion of the limitations of the plugin, as well as proposals for further

improvements.

The paper is organized as follows: section 2 describes LLVM/OpenMP re-
mote offloading and the related work, section 3 identifies performance issues
and present the corresponding optimizations, evaluation of our work is described
in section 4, and finally section 5 concludes the work and talk about future di-
rections.

2 Background

In this section, we describe the details of how OpenMP remote offloading works
in LLVM, as well as related work about the technologies and cases used later in
the experimental section.

2.1 OpenMP Offloading in LLVM/OpenMP

An OpenMP application’s offloading directives are lowered to functions calls into
the Host Runtime (libomptarget.so), which is the entry point of all offload-
ing operations in the LLVM/OpenMP offloading workflow shown in Figure 1.
The Host Runtime is target-agnostic, and it loads the Device Runtime plugin



Towards Efficient Remote OpenMP Offloading 3

OpenMP

Application libomptarget.so libomptarget.rtl.cuda.so libcuda.so


libcudart.so


Fig. 1. LLVM/OpenMP device offloading workflow for CUDA devices

according to the type of device code embedded in the fat application binary.
For example, it can load the CUDA plugin libomptarget.rtl.cuda.so, which
makes CUDA calls to transfer data and launch kernels.

The Host Runtime talks to the Device Runtime through the Device Plugin In-
terface, which is a small set of target-agnostic C functions, to perform offloading
operations (e.g. __tgt_rtl_data_alloc()). All Device Runtime plugins must
implement this interface, hiding low-level details from the Host Runtime.

2.2 The Remote Offloading Plugin

libomptarget.so libomptarget.rtl.remote.so Offloading
Server libomptarget.rtl.cuda.so

RPC

Client Server

Fig. 2. LLVM/OpenMP remote offloading workflow for CUDA devices

The idea of the remote offloading plugin is to use remote procedure calls
(RPC) to relay the plugin interface calls to remote processes, so the applica-
tion can access devices on other machines transparently. This plugin imple-
ments the core set of the Device Plugin Interface to talk to the Host Runtime.
OpenMP application are compiled as usual and no code modification is required
except for doing multi-device offloading using the device(n) clause. The plu-
gin is also compatible with OpenMP asynchronous offloading (e.g. the nowait
clause), thanks to the orthogonal design of the concurrent offloading mechanism
in LLVM/OpenMP [24].

In Figure 2, the Client stands for the OpenMP application, while the Server
is a binary provided by the remote offloading plugin. The user runs one instance
of the Client, and one instance of the Server per GPU node. Once connected, the
Client can offload to all the GPUs managed by all the Servers. Both the Host
Runtime and the Device Runtime plugin are working as they normally would,
unaware of the Client-Server pair in the middle.

For each plugin interface call, the Client serializes the function arguments
and sends one blocking RPC request to the Server. The server will deserialize
incoming requests and execute the corresponding device operation, then reply to
the Client, so it can proceed. For a map(to/from) operation, the buffer must also



4 W. Lu et al.

be serialized. The Server uses a task queue and a pool of threads to handle the
RPC requests, so that offloading activities on one GPU does not block activities
on other GPUs managed by the same Server.

Originally, the remote offloading plugin uses gRPC [5] as its RPC backend,
since it is the natural choice. Then an UCX [22] backend was added since it can
utilize high-performance interconnects like Infiniband, thus bringing the poten-
tial to improve the offloading application’s performance to a level comparable
to that of its MPI+X equivalent.

2.3 Related Work

OpenMP single-node multi-GPU offloading has been previously explored [7] [28],
but standard OpenMP does not go beyond the node boundary and the most pop-
ular approach to program distributed-memory GPUs is still the hybrid model of
MPI+X, X being a local GPU programming model such as CUDA or OpenMP.
An alternative that has received some attention is to replace MPI with a task-
based programming model that also interoperates with CUDA; among them are
Charm++ [1], UPC++ [2], Legion [3], and Chapel [4]. NVSHMEM [6] enables
remote communication directly from the CUDA kernels. Intel Cluster OpenMP
uses a Distributed Shared Memory runtime system to run OpenMP CPU par-
allel regions across nodes [23]. Kokkos Remote Spaces [8] is an extension to the
Kokkos programming model [27] to support distributed shared memory for pro-
gramming GPUs and other devices. rCUDA [19] is a framework for remote GPU
virtualization, in which a set of GPUs can be shared and remotely accessed by
several clients simultaneously.

Minimod [10] is one of the applications used in this study. Implementations of
Minimod have been evaluated with OpenMP tasks [18], and in distributed setups
using the Legion programming model targeting CPUs [17] and GPUs [16,21].
The present paper evaluates a version of Minimod using OpenMP target regions
wrapped in tasks to make use of multiple GPUs simultaneously.

3 Performance Analysis and Optimizations

This work focuses on the UCX backend of the remote offloading plugin for its
performance potentials. Additionally, the devices are running the exact same
kernel, so scalability issues mostly arise from runtime and communication over-
heads.

3.1 Runtime Optimizations

To identify the performance issues of the remote offloading process, we profiled a
microbenchmark that only does host-device transfers of fixed-size buffers, using
the map clause. The selected results of running on a single remote GPU are shown
in Figure 3. Clearly, the remote offloading plugin’s internal overhead dominates
the communication latency for all message sizes. This is a direct result of the RPC



Towards Efficient Remote OpenMP Offloading 5

0.0 0.2 0.4 0.6 0.8 1.0
Ratio

1

28

216

224

M
es

sa
ge

 S
ize

RPC
Transfer
GPU
Plugin Runtime

Fig. 3. Breakdown of remote map(from) latency

mechanism: the layers of abstractions to handle different offloading operations
and communication backends, communication progression/completion tracking,
data (de)serialization, and other bookkeeping operations. Since the plugin uses
blocking RPCs, all these overheads are translated to map latencies, which lead
to longer idle periods on the device.

0.0 0.2 0.4 0.6 0.8 1.0
Ratio

1

28

216

224

M
es

sa
ge

 S
ize

RPC
Transfer
GPU
Plugin Runtime

Fig. 4. Breakdown of remote map(from) latency, with runtime optimizations

UCX provides active messages for inter-node RPC, but its API is too primi-
tive to relay the plugin interface functions. The original remote offloading plugin
implemented its own RPC mechanism based on UCX’s message passing API. We
first improve the plugin from a software engineering point of view: use suitable
C++ features to reduce the overhead of the serializer and other internal abstrac-
tions, speedup UCX communication progression to reduce send-receive latency,
etc. The latency breakdown after applying our runtime optimizations is shown
in Figure 4. Although we have achieved around 6% overhead reduction for small
buffers, the optimizations’ effectiveness drops for larger ones.

3.2 CUDA-Aware Communication

The plugin’s RPC serializer is a major source of overhead. Similar to MPI, UCX
is mostly designed to send contiguous chunks of data between buffers on different
processes. To perform RPC, which is a high-level operation, the Client must
serialize function arguments and all the buffers involved before passing them to
UCX, and the Server must do the reverse. Additionally, for map(to/from) the



6 W. Lu et al.

Server needs a staging buffer to store a temporary copy of the mapped buffer,
to pass the mapped data between the serializer and the device API.

To map a host buffer to the device using the __tgt_rtl_datasubmit plugin
interface, a regular device plugins does a device allocation, an HtoD memcpy and
a device synchronization call. But for the remote offloading plugin, the RPC
serializer does multiple extra memory allocations and memcpy’s. These overheads
are repeated on both the Client and the Server and grows linearly with the
size of the buffer, which is why the runtime overhead accounts for such a large
percentage of the total latency.

To further reduce the overhead, we utilize the UCX’s CUDA support to
send and receive data directly from the GPU, eliminating the need for a stag-
ing buffer on the Server and other serializer overhead. When this mechanism
is active, a map(to/from) operation will be broken into two steps: an RPC re-
quest that only sends the metadata (device buffer address, buffer size, etc.),
and a second UCX send/receive request that transfers data directly between the
Client’s host memory and the Server’s device memory. The two-step approach
has its own associated overhead: if the mapped buffer is too small, then it may
be faster to serialize everything and use a single RPC request. Therefore, we
introduce an environment variable to specify the smallest buffer size to activate
the CUDA-aware UCX mechanism (SPLIT_THRESH). This threshold is affected
by many factors and should be experimentally determined for different software
and hardware combinations.

3.3 Thread Contention and NUMA-GPU Affinity

0.0 0.2 0.4 0.6 0.8 1.0
Ratio

1

28

216

224

M
es

sa
ge

 S
ize

RPC
Transfer + GPU
Plugin Runtime

Fig. 5. Breakdown of remote map(from) latency, with all optimizations applied

There are several other factors that affect map latency. In UCX, the Worker
object provides independent progression and completion of communication op-
erations. This means that even if all traffic goes through the same network card,
parallel injection from multiple Workers can still improve message throughput
through overlapping send-receive operations in the higher levels of the runtime
system, especially when the combined message flow is not large enough to sat-
urate the hardware bandwidth. Originally, the Server uses a single Worker to
serve all the GPUs it has access to. This means the Worker must use locks to



Towards Efficient Remote OpenMP Offloading 7

prevent data races caused by concurrent access from different threads, essentially
serializing many overlappable operations and reducing the injection rate [9]. In
this work, we use one Server(Worker) per GPU, to reduce thread contention.

Also, it is important to make sure that the Server is running in the NUMA
node that is the closest to the GPU it is offloading to. Modern heterogeneous
systems tend to have more than one GPU per compute node, and different GPUs
are local to different CPU sockets, if there is more than one socket. Additionally,
HPC systems like ORNL Summit and LLNL Sierra split the PCIe lanes of the
Infiniband network card evenly between the two sockets [29]. This means the
application must drive communication from both NUMA nodes in a balanced
fashion, to maximize communication performance. In our experiments, host-
device transfers that cross the NUMA boundary can have up to 23% higher
latencies than that of the transfers within the same NUMA node. In all our
experiments, we pin the Server process to the NUMA node that the GPU is
connected to, and UCX will pick up the closest network port.

Figure 5 shows the latency breakdown after applying the all optimizations
mentioned in this section, with SPLIT_THRESH set to 222 bytes. The results show
that we have achieved at least 11% reduction in overheads when compared to
the results of the original plugin in Figure 3, for all buffer sizes. Now, the plugin
internal overhead is always below 70% of the remote data mapping latency. Note
that the RPC overhead is a constant(5.328µs), but its percentage in the total
latency becomes over 20% for the smaller buffers, as a result of significantly
reduced absolute latency.

4 Evaluation
We evaluate our optimizations using microbenchmarks and proxy-apps on the
Cypress computing system at TotalEnergies R&T in Houston. Each Cypress
node contains one AMD EPYC 7F52 16-core CPU, one Mellanox ConnectX-6
200 Gb/s Infiniband network card, and four NVIDIA A100 GPUs. The sys-
tem runs CentOS 8 with Linux kernel 4.18.0, CUDA 11.5.119 and MOFED-5.1-
2.5.8.0. We use UCX commit 5879c44 of the v1.13x branch, with the GPUDirect
RDMA [12] and GDRCopy [11] transports enabled.

As the baseline, we use commit 6120be4 of the original remote offloading
plugin, which is based on commit 67ab4c0 of the LLVM trunk. The remote of-
floading plugin with only runtime optimizations is referred to as Opt1; while
plugin version Opt2 has all optimizations applied. Since we can eliminate un-
necessary overhead by allowing the Client to offload to its local GPUs directly
(instead of go through the remote plugin), we have included results that en-
abled Client-side offloading, which we refer to as Opt2L. All three proxy-apps
are tested in small and large problem sizes.

4.1 Microbenchmarks
Figure 6 shows the remote GPU to/from mapping latencies of different buffer
sizes. Compared to the baseline, the Opt2 version of the plugin reduces the



8 W. Lu et al.

0 10 20
Buffer size in bytes (2x)

102

103

104

105
La

te
nc

y(
us

)

map(to)
Baseline
Opt1
Opt2

0 10 20
Buffer size in bytes (2x)

102

103

104

105

La
te

nc
y(

us
)

map(from)
Baseline
Opt1
Opt2

Fig. 6. Remote GPU map(to/from) latency

message latency by ∼ 72% for small buffers, and ∼ 90% for large ones. With
Opt2’s lower device buffer mapping latencies, the OpenMP application can
launch target regions faster, thus obtaining better scalability.

Opt1 and Opt2 show little to no speedup for buffer size around 219 bytes. This
is caused by the compound effects of UCX switching its internal communication
protocol and our SPLIT_THRESH setting for enabling CUDA-aware communica-
tion, since we used the same setting for all buffer sizes instead of the best settings
for each size. For real applications, the user should adjust the SPLIT_THRESH,
as well as UCX’s protocol switching thresholds (zero-copy, rendezvous, etc.), so
that the latencies of the most frequently mapped buffer sizes are optimal.

4.2 Weak Scaling - RSBench and XSBench

XSBench [26] and RSBench [25] are proxy-apps that capture the core computa-
tion of the Monte Carlo neutron transport code OpenMC [20], while XSBench is
memory-bound and RSBench is compute-bound. We use the OpenMP offloading
version of both proxy-apps, with the same modifications used in [14] to enable
multi-device offloading. We run the proxy-apps on 4 to 16 GPUs, and normalized
the run times with respect to the run time of using 4 local GPUs without the
remote offloading plugin. We keep the amount of work and data transferred per
GPU constant to evaluate the weak scalability of the plugin.

Kernels execution time, total host-device transfer size per kernel, and the
total number of host-device transfers per kernel are listed in Table 1. The number
of transfers per kernel launch is important since it is proportional to the number
of RPC requests for device buffer allocation/free, and the actual data transfer.
So XSBench has 19 × 3 + 1 = 58 RPC requests per kernel launch, while the
number is 27× 3 + 1 = 82 for RSBench.



Towards Efficient Remote OpenMP Offloading 9

Table 1. XSBench/RSBench kernel durations and per-kernel launch data transfers

Kernel-Small Kernel-Large Transfer-Small Transfer-Large No. Transfers

XSBench 56.38 ms 271.6 ms 240.4 MB 5648 MB 19
RSBench 231.4 ms 1371 ms 5.325 MB 28.92 MB 27

N(1,4) N(2,8) N(3,12) N(4,16)
Device Setup

1.5

2.0

2.5

3.0

3.5

4.0

Re
la

tiv
e 

Ru
n 

Ti
m

e

Small

N(1,4) N(2,8) N(3,12) N(4,16)
Device Setup

10

20

30

40
Large

Baseline
Opt1

Opt2
Opt2-L

Fig. 7. Weak scaling results of XSBench

XSBench results are presented in Figure 7. For the horizontal axis, N(n, 4n)
stands for running the benchmark on n nodes and using all 4n GPUs. The
baseline version running the large setup crashes since it exhausts all available
host memory. Again, our optimized implementations are significantly faster than
the baseline. For 16 GPUs, Opt2L increases the parallel efficiency by 25.2%.
While we can achieve a 56% parallel efficiency on 16 GPUs for the small setup,
only 6% was obtained on 16 GPUs for the large setup. This is because the
XSBench-large transfers 5.5 GB of data per kernel launch, and all of them must
go through the Client’s network card without effective overlap. XSBench-large
is therefore severely communication-bound and does not scale well.

RSBench results in Figure 8 shows the effectiveness of our optimizations
for compute-bound applications with longer kernel execution times and smaller
data transfers. On 16 GPUs, all three optimized versions obtained at least 66%
parallel efficiency, while the baseline version goes as low as 34%.

4.3 Strong Scaling - Minimod

Minimod [10] is a proxy application that simulates the propagation of waves
through subsurface models, by solving a finite difference discretized form of the
wave equation. In this work, we use one of the kernels contained in Minimod:
the acoustic isotropic propagator in a constant-density domain [15].



10 W. Lu et al.

N(1,4) N(2,8) N(3,12) N(4,16)
Device Setup

1

2

3

4

5

Re
la

tiv
e 

Ru
n 

Ti
m

e
Small

N(1,4) N(2,8) N(3,12) N(4,16)
Device Setup

1.0

1.2

1.4

1.6

1.8

2.0

2.2
Large

Baseline
Opt1

Opt2
Opt2-L

Fig. 8. Weak scaling results of RSBench

Table 2. Minimod total kernel durations and data transfers (per iteration)

Kernel-Small Kernel-Large Transfer-Small Transfer-Large No. Transfers

171.9 µs 6733 µs 182.2 KB 4032 KB 2

for (int g = 0; g < nGPUs; g++) {
#pragma omp task depend(...)
#pragma omp target teams distribute parallel for device(g)
for (...)

// Stencil computation
}
// Halo exchange
for (int g = 0; g < nGPUs; g++) {

// Left halo region: DtoH
#pragma omp task depend(...)
#pragma omp target update from(...) device(g)
// Left halo region: HtoD
#pragma omp task depend(...)
#pragma omp target update to(...) device(g-1)
// Repeat for the right halo regions ...

}

Fig. 9. Simplified Minimod multi-GPU offloading and halo exchange workflow



Towards Efficient Remote OpenMP Offloading 11

Minimod natively supports multi-device OpenMP offloading using target
regions wrapped in OpenMP tasks (see Figure 9), and is strong-scaling in na-
ture [18]. The 3D grid used in Minimod is partitioned along the X-axis (i.e.
sliced parallel to the Y Z-plane), regardless of the number of devices it is run-
ning on. Therefore, the amount of halo data exchanged between the devices is
only related to the size of the grid, since the area of the cross-section of the grid
is always dimY ×dimZ. However, since the offloading Servers are only connected
to the Client, not to each other, the halo data must all be relayed by the Client,
creating a central communication bottleneck. Minimod’s kernel durations and
data transfer sizes for running on two devices are listed in Table 2.

N(1,4) N(2,8) N(3,12) N(4,16)
Device Setup

1

2

3

4

5

Re
la

tiv
e 

Ru
n 

Ti
m

e

Small

N(1,4) N(2,8) N(3,12) N(4,16)
Device Setup

2

4

6

8

10

Large

Baseline
Opt1

Opt2
Opt2-L

Fig. 10. Strong scaling results of Minimod

Figure 10 shows Minimod strong scaling results. Again, Opt2 and Opt2L
outperforms other versions of the plugin significantly, showing the effectiveness
of our optimizations. However, for all configurations, the run time increases
as we use more GPUs. The reason is: as the number of device increases, the
(already short) execution time of the kernel decreases linearly, but the halo
exchange overhead grows linearly. Additionally, all halo exchange traffic must
go through the Client, which leads to high communication contention. Since the
communication overhead dominates the execution time, we see no performance
improvement for all configurations.

4.4 Discussions

Our work has reduced the overhead of the LLVM/OpenMP remote offloading
plugin by a large margin, and is especially effective for weak scaling of compute-
bound applications. But as shown in Figure 5, plugin overhead still accounts for
more than 60% of the communication latency, which is a road blocker for higher



12 W. Lu et al.

strong scalability. One solution is to implement the asynchronous Device Plugin
Interface functions in the remote plugin, using UCX asynchronous communica-
tion APIs. We will need to replicate CUDA Stream functionalities to keep track
of asynchronous events and handle dependencies, but this will hide and/or re-
duce the aforementioned runtime overheads. We could also implement message
aggregation to reduce the total number of RPC requests, as many transfers listed
in Table 1 are only sending a single scalar.

OpenMP’s flat device model can be extended to expose the device topology to
the users, so they can do hierarchical computation decomposition. Similar to an
MPI shared-memory communicator, an OpenMP node construct can enumerate
the legion of devices attached to the same machine. We could also do implicit
hierarchical offloading by presenting all GPUs attached to the same NUMA node
as a single device, and map buffers to CUDA Managed Memory.

The current design of the LLVM/OpenMP runtime can also be extended
to push the scalability further. Currently, the Device Plugins know very little
about the big picture and rely on the Host Runtime’s prescriptive offloading
instructions, creating the central bottleneck. We could increase the autonomy of
the Device Plugins and give descriptive orders whenever possible. A partitioned
global address space model can also be introduced to support direct inter-node
device-to-device transfers.

Lastly, the single-Client multi-Server architecture must be replaced with
a more SPMD-like one, for the remote offloading plugin to work for a wider
spectrum of applications. Then current centralized approach not only creates
a communication bottleneck, but also limits the amount of host memory avail-
able to the application to be the amount of memory installed on the Client’s
node. One specification-breaking solution is to encourage the users to allocate
all host buffers that will be interacting with the device i inside a target data
device(i) construct. Then in run-time we ”offload” the entire target data
region to device i’s node, so that the host code inside that region also runs on
the remote node and can utilize its main memory. Alternatively, we could use
a page migration-based mechanism to transparently extend the amount of host
memory, similar to Intel Cluster OpenMP [23].

5 Conclusions and Future Work

Remote OpenMP device offloading is a promising alternative to MPI+X, as
it improves the portability and maintainability of the application by covering
both inter-node and intra-node computation in a single programming model.
In this work, we analyzed the performance bottlenecks of the LLVM/OpenMP
remote offloading plugin, and have identified the RPC serializer and the buffered
communication mechanism as two major sources of overhead. We then applied
optimizations that reduce the plugin’s internal overhead, and enabled CUDA-
aware UCX communications to accelerate the transportation of large buffers.
Evaluation using microbenchmarks shows that our optimizations have reduced
map latencies by up to 92%. With lower data transfer latencies, we have achieved



Towards Efficient Remote OpenMP Offloading 13

a minimum of 25.2% increase of parallel efficiency in proxy-apps running on 16
GPUs. Our optimizations are especially effective for weak scaling proxy-apps
that have relatively long-running kernels and small data transfers.

However, weak scaling with large data transfers and strong scaling still prove
to be challenging despite our optimizations. We propose a few runtime modi-
fications to further reduce the plugin’s latency and improve its scalability, but
ultimately we believe extending the OpenMP runtime design is required to reach
performance comparable to MPI+X.

For future work, we can implement the asynchronous plugin interface to hide
plugin internal overhead, add an MPI backend to further improve the plugin’s
portability, and extend the offloading Server to support direct Server-to-Server
transfers.

Acknowledgements

We would like to thank TotalEnergies EP Research and Technologies for their
support of this work. This research was supported in part by the Exascale Com-
puting Project (17-SC-20-SC), a collaborative effort of the U.S. Department of
Energy Office of Science and the National Nuclear Security Administration, in
particular its subproject on Scaling OpenMP with LLVM for Exascale perfor-
mance and portability (SOLLVE).

This research was also funded in part by the United States Department of De-
fense, and was supported by resources at Los Alamos National Laboratory, oper-
ated by Triad National Security, LLC under Contract No. 89233218CNA000001.

References

1. Acun, B., Gupta, A., Jain, N., Langer, A., Menon, H., Mikida, E., Ni, X., Rob-
son, M., Sun, Y., Totoni, E., Wesolowski, L., Kale, L.: Parallel programming with
migratable objects: Charm++ in practice. In: SC ’14: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. pp. 647–658 (2014). https://doi.org/10.1109/SC.2014.58

2. Bachan, J., Baden, S.B., Hofmeyr, S., Jacquelin, M., Kamil, A., Bonachea,
D., Hargrove, P.H., Ahmed, H.: Upc++: A high-performance communication
framework for asynchronous computation. In: 2019 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS). pp. 963–973 (2019).
https://doi.org/10.1109/IPDPS.2019.00104

3. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: Expressing locality and
independence with logical regions. In: SC ’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis.
pp. 1–11 (Nov 2012). https://doi.org/10.1109/SC.2012.71

4. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel
language. The International Journal of High Performance Computing Applications
21(3), 291–312 (2007). https://doi.org/10.1177/1094342007078442

5. gRPC community: grpc. https://grpc.io/about/

https://doi.org/10.1109/SC.2014.58
https://doi.org/10.1109/IPDPS.2019.00104
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1177/1094342007078442
https://grpc.io/about/


14 W. Lu et al.

6. Hsu, C.H., Imam, N., Langer, A., Potluri, S., Newburn, C.J.: An initial assessment
of nvshmem for high performance computing. In: 2020 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). pp. 1–10 (2020).
https://doi.org/10.1109/IPDPSW50202.2020.00104

7. Kale, V., Lu, W., Curtis, A., Malik, A.M., Chapman, B., Hernandez, O.: Toward
supporting multi-gpu targets via taskloop and user-defined schedules. In: Milfeld,
K., de Supinski, B.R., Koesterke, L., Klinkenberg, J. (eds.) OpenMP: Portable
Multi-Level Parallelism on Modern Systems. pp. 295–309. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58144-2_19

8. Kokkos: Kokkos remote spaces, https://github.com/kokkos/kokkos-remote-spaces
9. Lu, W., Curtis, T., Chapman, B.: Enabling low-overhead communication in multi-

threaded openshmem applications using contexts. In: 2019 IEEE/ACM Parallel
Applications Workshop, Alternatives To MPI (PAW-ATM). pp. 47–57 (2019).
https://doi.org/10.1109/PAW-ATM49560.2019.00010

10. Meng, J., Atle, A., Calandra, H., Araya-Polo, M.: Minimod: A finite difference
solver for seismic modeling. arXiv (2020), https://arxiv.org/abs/2007.06048

11. NVIDIA: Gdrcopy. https://github.com/NVIDIA/gdrcopy
12. NVIDIA: Nvidia cuda gpudirect rdma. https://docs.nvidia.com/cuda/

gpudirect-rdma/index.html
13. OpenMP Architecture Review Board: OpenMP Application Program-

ming Interface (Nov 2018), https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5.0.pdf, version 5.0

14. Patel, A., Doerfert, J.: Remote openmp offloading. In: Varbanescu, A.L., Bhatele,
A., Luszczek, P., Marc, B. (eds.) High Performance Computing. pp. 315–333.
Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-
031-07312-0_16

15. Qawasmeh, A., Hugues, M.R., Calandra, H., Chapman, B.M.: Performance porta-
bility in reverse time migration and seismic modelling via openacc. The Inter-
national Journal of High Performance Computing Applications 31(5), 422–440
(2017). https://doi.org/10.1177/1094342016675678

16. Raut, E., Anderson, J., Araya-Polo, M., Meng, J.: Evaluation of distributed tasks
in stencil-based application on gpus. In: 2021 IEEE/ACM 6th International Work-
shop on Extreme Scale Programming Models and Middleware (ESPM2). pp. 45–52
(2021). https://doi.org/10.1109/ESPM254806.2021.00011

17. Raut, E., Anderson, J., Araya-Polo, M., Meng, J.: Porting and evaluation of a
distributed task-driven stencil-based application. In: Proceedings of the 12th In-
ternational Workshop on Programming Models and Applications for Multicores
and Manycores. p. 21–30. PMAM’21, Association for Computing Machinery, New
York, NY, USA (2021). https://doi.org/10.1145/3448290.3448559

18. Raut, E., Meng, J., Araya-Polo, M., Chapman, B.: Evaluating performance of
openmp tasks in a seismic stencil application. In: Milfeld, K., de Supinski, B.R.,
Koesterke, L., Klinkenberg, J. (eds.) OpenMP: Portable Multi-Level Parallelism
on Modern Systems. pp. 67–81. Springer International Publishing, Cham (2020).
https://doi.org/10.1007/978-3-030-58144-2_5

19. Reaño, C., Silla, F., Shainer, G., Schultz, S.: Local and remote gpus per-
form similar with edr 100g infiniband. In: Proceedings of the Industrial
Track of the 16th International Middleware Conference. Middleware Indus-
try ’15, Association for Computing Machinery, New York, NY, USA (2015).
https://doi.org/10.1145/2830013.2830015

https://doi.org/10.1109/IPDPSW50202.2020.00104
https://doi.org/10.1007/978-3-030-58144-2_19
https://github.com/kokkos/kokkos-remote-spaces
https://doi.org/10.1109/PAW-ATM49560.2019.00010
https://arxiv.org/abs/2007.06048
https://github.com/NVIDIA/gdrcopy
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1007/978-3-031-07312-0_16
https://doi.org/10.1007/978-3-031-07312-0_16
https://doi.org/10.1177/1094342016675678
https://doi.org/10.1109/ESPM254806.2021.00011
https://doi.org/10.1145/3448290.3448559
https://doi.org/10.1007/978-3-030-58144-2_5
https://doi.org/10.1145/2830013.2830015


Towards Efficient Remote OpenMP Offloading 15

20. Romano, P.K., Forget, B.: The openmc monte carlo particle
transport code. Annals of Nuclear Energy 51, 274–281 (2013).
https://doi.org/https://doi.org/10.1016/j.anucene.2012.06.040

21. Sai, R., Mellor-Crummey, J., Meng, X., Araya-Polo, M., Meng, J.: Accelerating
high-order stencils on gpus. In: 2020 IEEE/ACM Performance Modeling, Bench-
marking and Simulation of High Performance Computer Systems (PMBS). pp.
86–108 (2020). https://doi.org/10.1109/PMBS51919.2020.00014

22. Shamis, P., Venkata, M.G., Lopez, M.G., Baker, M.B., Hernandez, O., Itigin, Y.,
Dubman, M., Shainer, G., Graham, R.L., Liss, L., Shahar, Y., Potluri, S., Ros-
setti, D., Becker, D., Poole, D., Lamb, C., Kumar, S., Stunkel, C., Bosilca, G.,
Bouteiller, A.: Ucx: An open source framework for hpc network apis and beyond.
In: 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects. pp.
40–43 (2015). https://doi.org/10.1109/HOTI.2015.13

23. Terboven, C., An Mey, D., Schmidl, D., Wagner, M.: First experiences with intel
cluster openmp. In: Proceedings of the 4th International Conference on OpenMP in
a New Era of Parallelism. p. 48–59. IWOMP’08, Springer-Verlag, Berlin, Heidelberg
(2008)

24. Tian, S., Doerfert, J., Chapman, B.: Concurrent execution of deferred openmp
target tasks with hidden helper threads. In: Chapman, B., Moreira, J. (eds.) Lan-
guages and Compilers for Parallel Computing. pp. 41–56. Springer International
Publishing, Cham (2022)

25. Tramm, J.R., Siegel, A.R., Forget, B., Josey, C.: Performance analysis of a reduced
data movement algorithm for neutron cross section data in monte carlo simulations.
In: EASC 2014 - Solving Software Challenges for Exascale. Stockholm (2014).
https://doi.org/10.1007/978-3-319-15976-8_3

26. Tramm, J.R., Siegel, A.R., Islam, T., Schulz, M.: XSBench - the development
and verification of a performance abstraction for Monte Carlo reactor analysis. In:
PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future. Kyoto
(2014), https://www.mcs.anl.gov/papers/P5064-0114.pdf

27. Trott, C.R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood,
N., Gayatri, R., Harvey, E., Hollman, D.S., Ibanez, D., Liber, N., Madsen, J.,
Miles, J., Poliakoff, D., Powell, A., Rajamanickam, S., Simberg, M., Sunderland, D.,
Turcksin, B., Wilke, J.: Kokkos 3: Programming model extensions for the exascale
era. IEEE Transactions on Parallel and Distributed Systems 33(4), 805–817 (2022).
https://doi.org/10.1109/TPDS.2021.3097283

28. Yan, Y., Lin, P.H., Liao, C., de Supinski, B.R., Quinlan, D.J.: Supporting multi-
ple accelerators in high-level programming models. In: Proceedings of the Sixth
International Workshop on Programming Models and Applications for Multi-
cores and Manycores. p. 170–180. PMAM ’15, Association for Computing Ma-
chinery, New York, NY, USA (2015). https://doi.org/10.1145/2712386.2712405,
https://doi.org/10.1145/2712386.2712405

29. Zimmer, C., Atchley, S., Pankajakshan, R., Smith, B.E., Karlin, I., Leininger, M.L.,
Bertsch, A., Ryujin, B.S., Burmark, J., Walker-Loud, A., Clark, M.A., Pearce,
O.: An evaluation of the coral interconnects. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analy-
sis. SC ’19, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3295500.3356166

https://doi.org/https://doi.org/10.1016/j.anucene.2012.06.040
https://doi.org/10.1109/PMBS51919.2020.00014
https://doi.org/10.1109/HOTI.2015.13
https://doi.org/10.1007/978-3-319-15976-8_3
https://www.mcs.anl.gov/papers/P5064-0114.pdf
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1145/2712386.2712405
https://doi.org/10.1145/2712386.2712405
https://doi.org/10.1145/3295500.3356166

	Towards Efficient Remote OpenMP Offloading

